scatteroscope

New Concept in Particle Size Analysis

Particle Size Analysis Report

Appendix 1. The particle size distribution of quercetin and SLN was determined using dynamic light scattering (DLS)

Appendix 2. The distribution of zeta potential in quercetin and solid lipid nanoparticles (SLN) was examined.

Appendix 3. QU, Blank-SLN, and N-QCT FTIR spectra

Sample(Formulatio)	Drug- Lipid Ratio	Coprit ol(mg)	Quercetin (mg)	<mark>Oleic</mark> Acid (gr)	PVA(1 %) (ml)	<mark>Lecitin</mark> (gr)	EE(%)	LD(%)
QU-SLN1	<mark>1:1</mark>	<mark>100</mark>	100	0.25	4	<mark>0. 5</mark>	<mark>65.6</mark> ±3.3	1.02% ± 2.6
Blank-SLN1	-	100	-	0.25	<mark>4</mark>	0. 5		
QU-SLN2	1:5	<mark>500</mark>	100	<mark>0.25</mark>	4	<mark>0. 5</mark>	<mark>74.4</mark> ± 2.8	1.24% ± 2.9
Blank-SLN2	-	<mark>500</mark>	-	<mark>0.25</mark>	<mark>4</mark>	<mark>0. 5</mark>		
QU-SLN3	<u>1:10</u>	1000	100	<mark>0.25</mark>	<mark>4</mark>	<mark>0. 5</mark>	<mark>87.3</mark> ±3.8	1.62% ± 3.1
Blank-SLN3	-	1000	-	<mark>0.25</mark>	<mark>4</mark>	<mark>0. 5</mark>		
QU-SLN4	1:30	<mark>3000</mark>	<mark>100</mark>	0.25	<mark>4</mark>	<mark>0. 5</mark>	<mark>96.6</mark> ± 2.3	1.78% ± 3.3
Blank-SLN4	-	<mark>300</mark>	-	0.25	<mark>4</mark>	<mark>0. 5</mark>		
QU-SLN5	1:47.5	<mark>4750</mark>	100	0.25	<mark>4</mark>	<mark>0. 5</mark>	<mark>99.3</mark> ± 1.2	1.81% ± 2.1
Blank-SLN5	-	<mark>4750</mark>	-	0.25	<mark>4</mark>	<mark>0. 5</mark>		

Appendix 4. Formulation of QU-SLN.

SD: standad deviation, LD: loading agent, EE: encapsulation; (mean ± SD), The results have been analyzed after three repetitions.

Appendix 5. The mole fraction of each combination

of N-QCT and Curcumin

Curcumin	10	25	50	100	150
N-QCT					
10	78.44	67.89	77.21	59.07	46.54
25	66.97	62.89	50.67	44.62	31.07
50	57.19	41.27	54.78	28.09	42.19
100	43.27	33.57	39.07	18.97	39.41
150	22.08	28.07	18.08	13.69	17.97

Appendix 6. Quantification of Western Blots with Image J

Step	Description
1. Scanning the Western Blot Film	The Western blot film was scanned at high resolution to ensure accurate detection of protein bands.
2. Downloading the Image	The scanned image of the Western blot was saved in a compatible format (e.g., TIFF, JPEG) for further analysis
3. Installing ImageJ	ImageJ software was installed on the computer. The version used was [specify version].
4. Setting the Measurement Criteria	Open the image file of the protein band scan in ImageJ. Select the "Rectangle" tool from the top toolbar to outline all protein bands of interest.
5. Analyzing the Gel	Navigate to the "Analyze" menu on the top toolbar, select "Gels," and then choose "Select First Lane" (Ctrl+1) for horizontal comparison of bands. Then, go to the "Analyze" menu, select "Gels," and click on "Plot Lanes" to generate a plot of the intensity profiles across the lanes.
6. Drawing and Measuring	Use the "Straight" tool from the top toolbar to draw across the plot at the base of the chart, helping to measure the intensity accurately. Select the "Wand" (tracing tool) from the top toolbar and click on each area of the plot to identify and highlight the peaks corresponding to the protein bands.
7. Labeling and Exporting Results	Return to the "Analyze" menu, select "Gels," and then click on "Label Peaks" to label the peaks on the plot. Click "OK" to finalize. Copy the results from the ImageJ output and paste them into Excel or Prism software for further analysis and visualization.